Quantization Quirks
GPUs support multiple precisions: fp32, fp16, bf16 (Brain Floating Point) are some examples. Tensor cores are very high performance matrix multiplication units - they can be used on these precisions.
Puzzler 1
There are four matrix multiplications at different precisions in the snippet below. Which ones are compute bound and which are memory bandwidth bound on an NVIDIA A100 (40 GB)?
def matmul(A):
torch.backends.cuda.matmul.allow_tf32 = False
fp32 = torch.matmul(A, A)
torch.backends.cuda.matmul.allow_tf32 = True
tf32 = torch.matmul(A, A)
A_fp16 = A.half()
fp16 = torch.matmul(A_fp16, A_fp16)
A_bf16 = A.to(dtype=torch.bfloat16)
bf16 = torch.matmul(A_bf16, A_bf16)
Puzzler 2
For the element-wise operations below, let error_bf16 be the error introduced when using bf16 and error_fp16 be the error introduced when using fp16. The ratio error_bf16/error_fp16 is 8 - why?
def vector_ops(A):
mul_fp32 = A.mul(0.5)
sqrt_fp32 = torch.sqrt(A)
sin_fp32 = torch.sin(A)
pow_fp32 = torch.pow(A, 3.14)
A_fp16 = A.half()
mul_fp16 = A_fp16.mul(0.5)
sqrt_fp16 = torch.sqrt(A_fp16)
sin_fp16 = torch.sin(A_fp16)
pow_fp16 = torch.pow(A_fp16, 3.14)
A_bf16 = A.to(dtype=torch.bfloat16)
mul_bf16 = A_bf16.mul(0.5)
sqrt_bf16 = torch.sqrt(A_bf16)
sin_bf16 = torch.sin(A_bf16)
pow_bf16 = torch.pow(A_bf16, 3.14)
loss = torch.nn.L1Loss(reduction='sum')
error_fp16_mul = loss(mul_fp32, mul_fp16)
error_fp16_sqrt = loss(sqrt_fp32, sqrt_fp16)
error_fp16_sin = loss(sin_fp32, sin_fp16)
error_fp16_pow = loss(pow_fp32, pow_fp16)
error_bf16_mul = loss(mul_fp32, mul_bf16)
error_bf16_sqrt = loss(sqrt_fp32, sqrt_bf16)
error_bf16_sin = loss(sin_fp32, sin_bf16)
error_bf16_pow = loss(pow_fp32, pow_bf16)
print(f"BF16/FP16 relative error \n"
f"mul: {error_bf16_mul/error_fp16_mul:.2E}\n"
f"sqrt: {error_bf16_sqrt/error_fp16_sqrt:.2E}\n"
f"sin: {error_bf16_sin/error_fp16_sin:.2E}\n"
f"pow: {error_bf16_pow/error_fp16_pow:.2E}")
A = torch.rand((2**9, 2**9), device=torch.device('cuda'), dtype=torch.float32)